
NASA Langley formal methods workshop, 1 May 2008,

Newport News VA, version of

SCC April 2008, based on

Kickoff for “Formally Supported Safety Cases For Adaptive

Systems”, NASA LaRC, 9 April 2008

Uses Runtime Verification Workshop, Budapest, March 2008

Loosely based on FDA Assurance Cases, 21, 22 Feb 2008

Loosely based on Open Group Paris 23 April 2007, slight

revisions of

Open Group San Diego 31 January 2007, major rewrite of

HCSS Aviation Safety Workshop, Alexandria, Oct 5,6 2006

Based on University of Illinois ITI Distinguished Lecture

Wednesday 5 April 2006

based on ITCES invited talk, Tuesday 4 April 2006

Formal Methods and Certification

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Formal Methods and Certification 1

Overview

• Standards- vs. goal-based safety cases

• Formal methods in goal-based safety cases

• Multi-legged safety cases

• Compositional approaches to system properties

John Rushby, SR I Formal Methods and Certification 2

Frameworks for Certification

• Certification provides assurance that deploying a given system

does not pose an unacceptable risk of adverse consequences

• Current methods explicitly depend on

◦ Standards and regulations

◦ Rigorous examination of the whole, finished system

And implicitly on

◦ Conservative practices

◦ Safety culture

• All of these are changing

John Rushby, SR I Formal Methods and Certification 3

The Standards-Based Approach to Software Certification

• E.g., airborne s/w (DO-178B), security (Common Criteria)

• Applicant follows a prescribed method (or processes)

◦ Delivers prescribed outputs

⋆ e.g., documented requirements, designs, analyses, tests

and outcomes; traceability among these

• Works well in fields that are stable or change slowly

◦ Can institutionalize lessons learned, best practice

⋆ e.g. evolution of DO-178 from A to B to C

• But less suitable with novel problems, solutions, methods

John Rushby, SR I Formal Methods and Certification 4

A Recent Incident

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Toward the end of a flight from Hong Kong to London: two

engines flamed out, crew found certain tanks were critically

low on fuel, declared an emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed

John Rushby, SR I Formal Methods and Certification 5

Implicit and Explicit Factors

• See also ATSB incident report for in-flight upset of Boeing

777, 9M-MRG (Malaysian Airlines, near Perth Australia)

• How could gross errors like these pass through rigorous

assurance standards?

• Maybe effectiveness of current certification methods depends

on implicit factors such as safety culture, conservatism

• Current business models are leading to a loss of these

◦ Outsourcing, COTS, complacency, innovation

• Surely, a credible certification regime should be effective on

the basis of its explicit practices

• How else can we cope with challenges of the future?

John Rushby, SR I Formal Methods and Certification 6

Standards and Goal-Based Assurance

• All assurance is based on arguments that purport to justify

certain claims, based on documented evidence

• Standards usually define only the evidence to be produced

• The claims and arguments are implicit

• Hence, hard to tell whether given evidence meets the intent

• E.g., is MC/DC coverage evidence for good testing or good

requirements?

• Recently, goal-based assurance methods have been gaining

favor: these make the elements explicit

John Rushby, SR I Formal Methods and Certification 7

The Goal-Based Approach to Software Certification

• E.g., UK air traffic management (CAP670 SW01),

UK defence (DefStan 00-56), growing interest elsewhere

• Applicant develops a safety case

◦ Whose outline form may be specified by standards or

regulation (e.g., 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

⋆ Make clear the underlying assumptions and judgments

⋆ Should allow different viewpoints and levels of detail

• Generalized to security, dependability, assurance cases

• The case is evaluated by independent assessors

◦ Explicit claims, evidence, argument

John Rushby, SR I Formal Methods and Certification 8

Toulmin’s Model of Argument

• Certification is ultimately a judgement

• So classical formal reasoning may not be entirely appropriate

• Advocates of assurance cases often look to Toulmin’s model

of argument

• Toulmin stresses justification rather than inference

(Argument)

(Evidence)

Backing

Grounds
Qualifier Claim

Rebuttal
Warrant

subclaim
Grounds

(Evidence)

• Supported in safety cases by notations (e g., GSN), tools

(e.g., ASCE); also tools for intelligence agencies

John Rushby, SR I Formal Methods and Certification 9

Toulmin’s Model of Argument (ctd.)

Claim: This is the expressed opinion or conclusion that the

arguer wants accepted by the audience

Grounds: This is the evidence or data for the claim

Qualifier: An adverbial phrase indicating the strength of the

claim (e.g., certainly, presumably, probably, possibly, etc.)

Warrant: The reasoning or argument (e.g., rules or principles)

for connecting the data to the claim

Backing: Further facts or reasoning used to support or

legitimate the warrant

Rebuttal: Circumstances or conditions that cast doubt on the

argument; it represents any reservations or “exceptions to

the rule” that undermine the reasoning expressed in the

warrant or the backing for it

John Rushby, SR I Formal Methods and Certification 10

Reconciling Toulmin’s Approach with Formal Methods

• We do formal methods

• So the qualifier is always ⊢ or |=

• How can we reconcile these with the reasonable doubts

manifested in Toulmin’s approach?

• One idea

◦ Implicit in the work of Jackson and Zave, Goodenough

and Weinstock, and others

Is to put them in the assumptions A1, . . . , An under which the

system S satisfies the requirements R

A1, . . . , An, S ⊢ R

• Then do safety analysis on each assumption Ai

◦ e.g., FMEA, HAZOP, FTA, other HA techniques

John Rushby, SR I Formal Methods and Certification 11

Other Proof Hazards

• The system specification S and requirements R should be

analyzed similarly

• And there’s a possibility the proof is flawed

◦ Proof diversity may mitigate this

Or deliberately unsound—e.g., static analysis

• And the implementation of the specification

◦ Usually a subsidiary claim or claims

• Can do hazard analysis and mitigation on all these

• Observe this framework provides an uncontroversial and

constructive treatment for the hysterical concerns of Fetzer

John Rushby, SR I Formal Methods and Certification 12

Implementation Hazards

• Currently, we apply safety analysis methods (HA, FTA,

FMEA, HAZOP etc.) to an informal system description

◦ Little automation, but in principle

◦ These are abstracted ways to examine all reachable states

• Then, to be sure the implementation does not introduce new

hazards, require it exactly matches the analyzed description

◦ Hence, DO-178B is about correctness, not safety

• Instead, use a formal system description

◦ Then have automated forms of reachability analysis

◦ Closer to the implementation, smaller gap to bridge

• Analyze the implementation for preservation of safety,

not correctness

John Rushby, SR I Formal Methods and Certification 13

Implementation Hazards:

Standards Focus on Correctness Rather than Safety

safety

verification

correctness

safety goal system rqts

software rqts

code

software specs

system specs

validation

• Premature focus on correctness is hugely expensive

goal-based methods could reduce this

• Could also allow runtime checking of safety properties

John Rushby, SR I Formal Methods and Certification 14

Even Weak Models Have Value

A wealth of opportunities to the left; can apply them early, too
N

um
bu

r
of

 c
as

es
 e

xa
m

in
ed

Fidelity of model

10^2

10^4

10^6

10^8

10^10

state machines flight h/w

current

new

practice

opportunities

h/w in loopsimulationsmodels

John Rushby, SR I Formal Methods and Certification 15

Overall V&V Process

Traditional Vee Diagram (Much Simplified)

system
requirements test

design/code unit/integration
test

time and money

John Rushby, SR I Formal Methods and Certification 16

Vee Diagram Tightened with Formal Analysis

system
requirements test

design/code unit/integration
test

time and money

Example: Rockwell-Collins

John Rushby, SR I Formal Methods and Certification 17

Runtime Assurance for Adaptive Systems

• What about adaptive systems that adjust or construct

behavior at build-, load-, or run-time?

• Shouldn’t some of the assurance move to runtime also?

Modest approach: use runtime checking to constrain

adaptive systems to safe regions

◦ When is this feasible? (cf. Lui Sha’s work)

◦ Use runtime verification (checkers derived from formal

analysis) to deliver assurance for certification

Ambitious approach: use formal synthesis of adaptive

systems themselves

◦ Synthesize controllers to generate safe behavior

⋆ Ramage and Wonham: controller synthesis

⋆ Analyzed as a game: guarantee a winning strategy

• Instead of using model checking and other formal methods

for analysis, we use them for monitoring and synthesis

John Rushby, SR I Formal Methods and Certification 18

Runtime Assurance: Examples

• AI planning

◦ Check generated plans

◦ Do the generation (cf. bounded model checking)

• Model-based diagnosis and repair

◦ Check the diagnoses and proposed repairs

◦ Do the diagnosis and repair generation: cf. qualitative

reasoning and hybrid abstraction

• Adaptive control

◦ Fixed model, tune the parameters

◦ Hybrid systems model checking (box stability etc.)

• CMAC (cerebellum model articulation control)

◦ And other connectionist models: discover the model

◦ Can possibly synthesize a safe envelope

John Rushby, SR I Formal Methods and Certification 19

Just-In-Time Certification

• Some of the verification and certification activity is moved

from design-time to run-time

• We trust automated verification methods for analysis, so why

not trust them for monitoring and synthesis?

◦ Certification would examine the models, trust the

synthesis

• Will need to consider time-constrained synthesis

◦ Anytime algorithms

◦ Seek improvements on safe default

• Some analysis methods can deliver a certificate (e.g., a

proof); used for synthesis that would truly be just-in-time or

runtime certification!

John Rushby, SR I Formal Methods and Certification 20

Multi-Legged Arguments

• Runtime assurance might put too many eggs in one basket

• So we’d like to combine it with other methods

• Higher Levels of DO-178B/EALs/SILs also demand multiple

forms of evidence

• What’s the argument that these deliver increased assurance?

• Generally an implicit appeal to diversity

◦ And belief that diverse methods fail independently

◦ Not true in n-version software, should be viewed with

suspicion here too

• Want to distinguish rational multi-legged cases from nervous

demands for more and more and . . .

• Need to know the arguments supported by each item of

evidence, and how they compose

John Rushby, SR I Formal Methods and Certification 21

Two Kinds of Uncertainty In Certification

• One kind concerns failure of a claim, usually stated

probabilistically (frequentist interpretation)

◦ E.g., 10
−9 probability of failure per hour,

or 10
−3 probability of failure on demand

• The other kind concerns failure of the assurance process

◦ Seldom made explicit

◦ But can be stated in terms of subjective probability

⋆ E.g., 95% confident this system achieves 10
−3

probability of failure on demand

⋆ Note: this does not concern sampling theory and is not

a confidence interval

• Demands for multiple sources of evidence are generally aimed

at the second of these

John Rushby, SR I Formal Methods and Certification 22

Bayesian Belief Nets

• Bayes Theorem is the principal tool for analyzing subjective

probabilities

• Allows a prior assessment of probability to be updated by

new evidence to yield a rational posterior probability

◦ E.g., P(C) vs. P(C | E)

• Math gets difficult when the models are complex

◦ i.e., when we have many conditional probabilities of the

form p(A | B and C or D)

• BBNs provide a graphical representation for hierarchical

models, and tools to automate the calculations

• Can allow principled construction of multi-legged arguments

John Rushby, SR I Formal Methods and Certification 23

A BBN Example

O

T

C

V

Z

S

Z: System Specification

O: Test Oracle

S: System’s true quality

T: Test results

V: Verification outcome

C: Conclusion

Example joint probability table: successful test outcome

Correct System Incorrect System

Correct Oracle Bad Oracle Correct Oracle Bad Oracle

100% 50% 5% 30%

John Rushby, SR I Formal Methods and Certification 24

Absolute Claims in Multi-Legged Arguments

• Can get surprising results (Littlewood and Wright)

◦ E.g., under some combinations of prior belief, increasing

the number of failure-free tests may decrease our

confidence in the test oracle rather than increase our

confidence in the system reliability

• The anomalies disappear and calculations are simplified if one

of the legs in a two-legged case is absolute

◦ E.g., 95% confident that this claim holds. . . period

◦ Formal methods deliver this kind of claim

• Aside: philosophers studying confirmation theory (part of

Bayesian Epistemology) formulate measures of support

differently than computer scientists

◦ e.g., P(E | C) - P(E | not C) vs. P(C | E) - P(C)

However, these are related

John Rushby, SR I Formal Methods and Certification 25

Practical Considerations

• This approach assumes the verification leg considers the

same system description and requirements as the other leg

• But this is seldom the case

◦ Verification of weak properties: static analysis etc.

◦ Verification of abstractions of the real system

◦ Verification of specific critical properties (subclaims)

• Research needed to develop the theory to cover these issues

• And to factor runtime verification methods into the

treatment

John Rushby, SR I Formal Methods and Certification 26

Systems and Components

• The FAA certifies airplanes, engines and propellers

• Components are certified only as part of an airplane or engine

• That’s because it’s the interactions that matter and it’s not

known how to certify these compositionally

• But modern engineering and business practices use massive

subcontracting and component-based development that

provide little visibility into subsystem designs

• Furthermore, the binding times for system architectures and

for component behaviors are being delayed

• And adaptive systems may have undesired emergeent

behavior due to interactions

• So we are forced to contemplate compositional and

incremental approaches to certification

John Rushby, SR I Formal Methods and Certification 27

Compositional and Incremental Certification

• These are immensely difficult

◦ The assurance case may not decompose along

architectural lines

• But, in some application areas we can insist that it does

◦ Goes to the heart of what is an architecture

• Need to ensure interactions use only known, intended

mechanisms

◦ No unprotected IPC channels

◦ No signaling through cache occupancy, etc.

◦ No unmodeled interaction through the controlled plant

• This is what IMA is about

• And the MILS approach to security

John Rushby, SR I Formal Methods and Certification 28

The MILS Two-Level Approach

Policy/Functional Level: perform a decomposition to a

federated virtual architecture (circles and arrows picture) and

identify the trusted components and their local

security/safety requirements and their communications

channels

• Do this in a way that minimizes complexity of trusted

components and their policies

• Assume components and communications are free

Resource Sharing Level: figure out how to allocate virtual

components to physical resources

• MILS/IMA provides technologies (basically, separation) so

that virtual components of various types, and their

communications channels, can share physical resources

without compromising the integrity of the policy level

John Rushby, SR I Formal Methods and Certification 29

Mapping to Flight Systems

• Policy/Functional Level: flight-critical software

• Sharing level: IMA, partitioning

• PPs: The Common Criteria for Information Technology

Security Evaluation (CC) are specialized to classes of

systems/components through Protection Profiles (PP) to

Security Targets (ST) to Targets of Evaluation (TOE); e.g.,

there’s a PP for High Robustness Separation Kernels

John Rushby, SR I Formal Methods and Certification 30

Two Kinds of Components, Two Kinds of PPs

The policy and sharing levels of the MILS architecture have

different concerns and are realized by different kinds of

components having different kinds of PPs

Policy/Functional level: components that provide or enforce

application-specific security or safety functions

• Examples: downgrading, authentication, autoland

• Their PPs are concerned with the specific security/safety

function that they provide

Sharing level: components that securely share physical

resources among logical entities

• Examples: separation kernel, partitioning communication

system, file system, or network stack

• Their PPs are concerned with

partitioning/separation/secure sharing

John Rushby, SR I Formal Methods and Certification 31

Two Kinds of Components, Three Kinds of Composition

We need to consider three kinds of component compositions

policy/policy or fuctional/functional: need compositionality

sharing/policy or sharing/functional: need composability

sharing/sharing: need additivity

Take these in turn

John Rushby, SR I Formal Methods and Certification 32

Compositionality

Policy or functional components combine in a way that ensures

compositionality

• There’s some way to calculate the properties of interacting

policy components from the properties of the components

(with no need to look inside), e.g.:

◦ Component A guarantees P if environment ensures Q

◦ Component B guarantees Q if environment ensures P

◦ Conclude that A ||B guarantees P and Q

• Assumes components interact only through explicit

computational mechanisms (e.g., shared variables)

John Rushby, SR I Formal Methods and Certification 33

Composability

Sharing components ensure composability of policy or

functional components

• Properties of a collection of interacting policy components

are preserved when they are placed (suitably) in the

environment provided by a collection of sharing components

• Hence sharing components do not get in the way

• And the combination is itself composable

• Hence policy components cannot interfere with each other

nor with the sharing ones

Composability makes the world safe for compositional reasoning

John Rushby, SR I Formal Methods and Certification 34

Additivity

Sharing components compose with each other additively

• e.g., composable(kernel) + composable(network)

provides composable(kernel + network)

• There is an asymmetry: partitioning network stacks and file

systems and so on run as clients of the partitioning kernel

John Rushby, SR I Formal Methods and Certification 35

Impact On PPs

• We need to ensure resource sharing PPs ensure composability

◦ Need formal and informal constraints for this

◦ Tradeoffs in functionality/performance vs. ease of

assurance

• And that they are additive

◦ Compatible sets of foundational threats, assumptions,

policies

• Policy PPs need to be compositional

◦ Need formal and informal constraints for this

John Rushby, SR I Formal Methods and Certification 36

Controlled Interfaces

• If we have successfully controlled what interfaces exist

• The next task is to ensure they are used correctly

• That is, ensure interactions follow their prescribed protocol

• Can be done statically for preplanned compositions

• Or dynamically for opportunistic ones

◦ E.g., interface automata

◦ With runtime verification

• But we may still have problems with emergent behavior

◦ E.g., coupling through the controlled plant

◦ Unmanned spacecraft have a lot of experience

◦ Some aircarft will need comparable autonamy

(e.g., UAVs, unmanned freighters)

Research opportunities here

John Rushby, SR I Formal Methods and Certification 37

Summary

Have described four elements for a science-based certification

framework

• Goal based safety cases

• Formal methods in goal-based safety cases

◦ Including runtime monitoring and synthesis

• Multi-legged safety cases

• Compositional approaches to system properties

John Rushby, SR I Formal Methods and Certification 38

